
www.manaraa.com

University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

January 2013

Evaluation of Four Portable Cooling Vests for
Workers Wearing Gas Extraction Coveralls in Hot
Environments
Joseph Kevin Johnson
University of South Florida, joekjohnson@gmail.com

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Occupational Health and Industrial Hygiene Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Johnson, Joseph Kevin, "Evaluation of Four Portable Cooling Vests for Workers Wearing Gas Extraction Coveralls in Hot
Environments" (2013). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/4514

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F4514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F4514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F4514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F4514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F4514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F4514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/742?utm_source=scholarcommons.usf.edu%2Fetd%2F4514&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


www.manaraa.com

 
 

 
 
 
 

Evaluation of Four Portable Cooling Vests 
 

for Workers Wearing Gas Extraction Coveralls in Hot Environments 
 
 
 

by 
 
 
 

Joseph K. Johnson 
 
 
 
 
 

A thesis submitted in partial fulfillment   
of the requirements for the degree of  
Master of Science in Public Health 

Department of Environmental and Occupational Health 
College of Public Health 

University of South Florida 
 
 
 

Major Professor: Thomas E. Bernard, Ph. D. 
Yehia Y. Hammad, Sc. D. 
Steven P. Mlynarek, Ph. D. 

 
 

Date of Approval 
March 6, 2013 

 
 
 

Keywords: Cooling strategies, exercise tolerance, uncompensable heat stress, 
microclimate cooling, heat strain 

 
Copyright © 2013, Joseph K. Johnson 

 
 

  



www.manaraa.com

 
 

 

 

DEDICATION 

 

 I dedicate this work to my family. The completion of this thesis would not have 

been possible without the encouragement and love of my wife Tiffany, nor the inspiration 

provided by our daughter Paige.  

  



www.manaraa.com

 
 

 

 

ACKNOWLEDGMENTS 

 

 I am grateful to the US Coast Guard for funding my education and providing me 

time to pursue an advanced degree. I thank Dr. Thomas Bernard and Dr. Candi Ashley 

for their expert advice and direction, and for providing me the opportunity to take part in 

this study. I also acknowledge all USF Environmental and Occupational Health 

Professors and staff for making my experience at USF a delightful and enriching 

experience, especially Dr. Steven Mlynarek and Dr. Yehia Hammad who participated in 

my thesis committee. This study would not have been possible without funding from the 

Gas Technology Institute Inc., the hard work of the laboratory staff, and the dedication of 

the study volunteers.  

 



www.manaraa.com

i 
 

 

 

TABLE OF CONTENTS 

 

LIST OF TABLES  iii   
 
LIST OF FIGURES  iv   
 
ABSTRACT   v    
 
CHAPTER 1: INTRODUCTION 1  
 Problem Statement 1  
 Research Question 4  
 
CHAPTER 2: LITERATURE REVIEW 5  
 Types of Cooling Devices 5 
 Phase Change Material Cooling Systems 5 
 Fluid Cooled Garments 10 
  Liquid Cooling Systems 11 
  Air Cooling Systems 12 
 Evaporative Cooling Garments 14 
 
CHAPTER 3: METHODS 16 
 Overview  16 
 Equipment  16 
 Participants  17 
 Protocol  18 
 Personal Cooling Systems 20 
  Frozen Polymer Vest 20 
  Liquid Cooling Vest 21 
  Air Cooling Vest 22 
  Liquid Carbon Dioxide Vest 22 
Determination of Dependent Data 24 
Data Analysis   25 
 
CHAPTER 4: RESULTS 26 
 Heat Storage Rates 27 
 Body Core Temperature 28 
 Skin Temperature 29 
 Cardiovascular Strain 31 
 
CHAPTER 5: DISCUSSION 33 



www.manaraa.com

ii 
 

 Limitations  36 
 Conclusion  37 
 
REFERENCES  38 
 
APPENDICES  42 
 Appendix A: Tukey’s HSD Results 43 
 Appendix B: Institutional Review Board Approval Letter 44 
 
 
  
  
  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



www.manaraa.com

iii 
 

 
 
 
 

LIST OF TABLES 

 

Table I: Reports of cooling system performance, factors that were reported as 
affecting performance and the reported or estimated cooling rate. .................15 

 
Table II: Physical characteristics of five male participants ............................................18 
 
Table III:  Summary of experimental results ....................................................................26 
 
Table AI: Mean differences Tukey’s honestly significant difference multiple 

comparison test results. ....................................................................................43 
 
 
  



www.manaraa.com

iv 
 

 
 
 
 

LIST OF FIGURES 

 

Figure 1: Protocol clothing consisted of gym shorts, shoes, and a tee-shirt worn 
under Nomex® coveralls and the flame resistant Gas Extraction Suit ® 
(with flame resistant gloves and balaclava hood) ............................................20 

 
Figure 2: The front side of the StaCool Industrial Vest ® with three of the six 

12-cell frozen polymer panels exposed ............................................................21 
 
Figure 3: Pictured from left to right: 1) CoolShirt® Aqua Vest system, 2) 

Allegro® air vest with Cool-Box air cooling system (Air Systems 
Inc.), and 3) Porticool II ® cooling ..................................................................23 

 
Figure 4: Mean heat storage rates [W] and standard deviation whiskers for each 

cooling system.  ...............................................................................................28 
 
Figure 5:   Mean change in rectal temperature [⁰C] and standard deviation for 

each cooling system and no-cooling (control). ................................................29 
 
Figure 6: Mean core temperature across time. ................................................................30 
 
Figure 7:   Mean change in skin temperature and standard deviation whiskers for 

each cooling system. ........................................................................................30 
 
Figure 8:   Mean skin temperature across time.. ................................................................31 
 
Figure 9: Mean change in heart rate and standard deviation whiskers for each 

cooling system. ................................................................................................31 
 
Figure 10: Mean heart rate across time. ............................................................................32 
 
  



www.manaraa.com

v 
 

 

 

ABSTRACT 

 

 Excessive exposure to heat stress can cause a host of heat-related illnesses. For 

laborers, job specific work demands and protective garments greatly increase the risk of 

succumbing to the effects of heat stress. Microclimate cooling has been used to control 

heat stress exposure where administrative or engineering controls are not adequate. This 

study tested the performance of four personal cooling vests for use with insulated 

protective clothing (gas extraction coveralls) in warm-humid (35⁰C, 50% relative 

humidity) and hot-dry (40⁰C, 30% relative humidity) conditions. On 10 separate 

occasions, 5 male volunteers walked on a treadmill to elicit a target metabolic rate of 300 

watts, for 120 minutes, while wearing a (a) water cooled vest, (b) air cooled vest, (c) 

frozen polymer vest (FP) (d) liquid CO2 cooling (LCO2) vest, or (e) no cooling (NC). A 

three-way mixed effects ANOVA was used to assess the results and a Tukey’s Honestly 

Significant Difference multiple comparison test was used to identify where significant 

differences occurred (ρ < 0.05). The air, water, and FP systems produced significantly 

lower heat storage rates compared to NC. To the extent that the gas extraction coverall is 

worn in an environment between 30⁰C and 45 ⁰C and the rate of work is moderate, the 

FP, air and water vest were shown to manage heat storage well, reducing storage rate by 

about 48%, 56% and 65% respectively. 
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CHAPTER 1: INTRODUCTION 

 

Problem Statement 

 Laborers exposed to an excessive amount of heat stress are at risk for heat-related 

illnesses such as heat cramps, heat exhaustion, and heat stroke. The extent of heat stress 

exposure depends on the environment, work demands, and clothing. Heat stress may also 

impair cognitive function, leading to poor decision-making and careless work practices.(1) 

 Of primary consideration in assessing heat stress are the environmental factors of 

air temperature, humidity, air movement, and radiant heat. High air temperature and 

radiant heat load can add heat to the body while excessive humidity can lower the rate of 

evaporation, the body’s primary means of heat dissipation. The physiological impact of 

these environmental related heat stress factors can be greatly amplified by clothing and 

work demands. When physiological adaptations to heat have reached their limits 

uncompensable heat stress ensues. 

 Personal protection ensembles, such as those used by firefighters and gas utility 

workers, reduce water vapor permeability and increase insulation. Under such conditions 

the body cannot compensate for the lack of cooling, heat storage ensues, and the body has 

a reduced physiological tolerance to heat stress.(2) Gas utility linemen, who are repairing 

or maintaining gas transmission pipelines, rely on flame resistant gas extraction coveralls 

for protection when there is the potential of blowing gas ignition and explosion. These 

coveralls are constructed entirely of flame resistance materials and incorporate fitted 
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ankle, wrist, and neck cuffs to prevent flammable gas from entering. The coveralls are 

designed to be worn over a harness, and are built with a lanyard port in the back, 

necessary to extract workers if a flash fire occurs. The gas extraction coverall, related 

flame resistance balaclava sock hood, and multilayer heat protective gloves protect 

workers by insulating them against heat long enough to egress from the area in the event 

of an explosion. 

 The extent of heat stress is difficult to appraise when protective ensembles are 

donned for protection from physical, chemical, or biological hazards.(3-5) The National 

Institute for Occupational Safety and Health (NIOSH) and ACGIH® (American 

Conference of Governmental Industrial Hygienist) publish guidelines for heat stress 

evaluation, however; these guidelines are only applicable to workers that are not wearing 

barriers which significantly restrict evaporation. Inability to evaluate heat stress means 

employers and employees have to rely on physiological monitoring to avoid heat related 

illness.(6) Thus, gas utility crews and employers are confronted with the competing task of 

managing heat stress via physiological monitoring, reducing risk of fire related injuries, 

and completing the assigned job in an economically feasible timeframe. Moreover, the 

small size of the crews, requisite specialized training, and mobility of the gas utility 

crews also limits the usefulness of administrative controls such as work-rest cycles.  

 Strategies to control exposure to heat stress in protective ensembles include 

intermittent work cycles (vary duration with conditions), intermittent work coupled with 

cooling system during the rest phase, continuous cooling during uninterrupted work, 

continuous cooling coupled with intermittent work, and self-limiting work breaks. One 

approach is to remove the protective clothing during the rest phase and rely on natural 
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cooling, but this tactic assumes that the ambient environment is conducive to adequate 

heat exchange during rest periods when the ensemble is removed.(7) Using natural cooling 

or cooling systems during rest periods does not diminish the discomfort of wearing 

protective ensembles during work nor does it reduce cardiovascular strain or sweat 

production during work cycles.(8) Such administrative strategies may provide a false 

sense of protection from heat related illness;  rest cycles merely oscillate the cumulative 

heat storage in conditions conducive to heat stress.(9) The cooling approach examined in 

the present study is continuous cooling during uninterrupted work. 

 Providing cooling during continuous work relies on portable systems to create a 

microclimate inside the protective ensemble such that thermal balance is achieved. 

Microclimate cooling is usually achieved by circulating air or liquid to and from a heat 

sink or by wearing phase changing materials. The former is referred to as active cooling 

while the latter is referred to as passive cooling. Regardless of system design, the goal of 

personal cooling is to reduce heat storage, increase comfort, and lower the physiological 

strain of working in protective clothing in uncompensable conditions.  

 Estimating the cooling power of a cooling device for use with a protective 

ensemble of particular design is best accomplished through physiological monitoring 

during human trials.(4) Other methods of evaluating physiological impact of an protection 

ensemble are mathematical modeling, and use of thermal manikins.(4) Methods of 

monitoring heat stress include rectal temperature, heart rate, sweat rate, and metabolic 

rate. In addition, exposure time is used to express increase in subject tolerance and/or 

control of heat storage in uncompensable conditions.  
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 Differences in cooling system performance can be observed as differences in the 

rate of increase of body core temperature (Tre). Therefore, the cooling rate (CR) of a 

particular cooling device can be estimated by calculating the difference between the 

metabolic heat (M) generation measured during a controlled trial and the observed rate of 

heat storage (S) during the same trial. That is CR = M – S. In this study, CR is used as a 

means for comparing cooling vest performance to previous studies.  

 The purpose of this research was to examine the performance of four 

commercially available personal cooling systems in controlling heat strain in people 

wearing gas extraction ensembles during continuous exercise in standard dessert or 

standard subtropical conditions.  

Research Question 

 What are the differences among the cooling systems on safe exposure time and 

the rate of change of body temperature?  The null hypothesis of this study is that there is 

no difference among commercially available cooling systems with respect to the cooling 

rate.    
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CHAPTER 2: LITERATURE REVIEW 

 

Types of Cooling Devices 

 A recent description of the categories of personal cooling devices by Yang, 

Stapleton, Diagne, Kenny, and Lan (2012) described the following three categories; 

phase change materials (PCMs), fluid cooled garments (FCGs), and evaporative 

devices.(10) A description of each cooling garment category follows, with emphasis on 

FCGs and PCM, as the present study examined the performance of three FCGs and one 

PCM.  

Phase Change Material Cooling Systems 

 PCM garments rely on a frozen substance to absorb heat during phase change, 

most commonly from solid to liquid. Exploiting the latent heat of sublimation of dry ice 

is a less common method. (11) Since PCM garments do not rely on a power source to 

move the coolant, such garments are also called passive cooling systems.(12) Among 

microclimate cooling systems, PCM garments have long been extolled as the cheapest, 

most mobile, and easiest to don.(13-15)   

 To date, the materials used in human trials involving PCM cooling garments have 

included; frozen water, frozen CO2 (dry ice), paraffin wax and various frozen aqueous 

solutions. The heat sinks in most commercially available PCM garments consist of sealed 

plastic packets filled with water or gelling agents.  
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 Regardless of chemical composition, cooling packs act as heat sinks by way of 

conduction. For conduction to take place the garment must be designed to ensure 

adequate contact between the skin and heat sink in a manner that does not hinder 

mobility. This is most commonly accomplished with vest. Other methods of providing 

PCM cooling during work include direct insertion of heat sinks into specially adapted 

coveralls, head coverings, neck coverings, and ponchos.(13, 16, 17)  

 During fusion, water ice transfers about 80 kcal (335 kJ) of heat per kg of ice and 

an additional transfer of 36-38 kcal (150-159 kJ) occurs due to the specific heat of 

water.(13) The rate of heat transfer at the interface is directly proportional to the quantity 

of skin in contact with the heat sink.(11, 13, 18, 19) Total service time depends directly on the 

heat absorbing capacity of the coolant, which is the total amount of ice in the ice vests.(11, 

13, 19, 20) One drawback of using PCMs with low staring temperatures is that garment 

manufacturers must provide insulation between the skin and cooling surface to prevent 

discomfort or skin injury. This barrier reduces cooling efficiency. 

 PCM cooling systems are vulnerable to reduced service time due to losses of 

capacity to the environment. However, the greater the clothing insulation over the passive 

system, the more it is protected from the outside environment. Wearing ice vest 

underneath protective ensembles may create cooling by convection as cool air is trapped 

in the suit, although the contribution to total cooling has not been quantified by 

experimental data.(14) 

 The need for unrestrictive cooling garments for maintenance crews at nuclear 

power plants led Kamon et al.(13) to the evaluation of a frozen water shirt and jumpsuit. 

The jumpsuit, loaded with ice packets which were in contact with the trunk, buttocks, and 
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upper thigh, covered 75% of the body surface and was tested with loads of 7.2 kg of ice 

(70 gm packets) and 6.2 kg of ice (60 gm packets). The shirt covered approximately 40% 

of the body and was loaded with 3.8 kg of ice (70 gm packets). Significantly longer stay 

times, slower rise in core temperatures, and slower increase in heart rates were a linear 

function of ice weight.(13) What’s more , Kamon et al.(13) found that none of the 

aforementioned designs hindered movement, even allowing workers to gain access to 

crawl under pipe and work in a confined space. 

 Since 1984, several ice vests have used gelling agents to reduce the likelihood of 

cooling pack leaks.(15) Using a calorimetric method, Coleman(15) compared the cooling 

capacity of  three commercial ice vests containing frozen gelled coolant materials to the 

heat storage capacity of pure water-ice vest and found  that gelled coolant had heat 

storage capacity of approximately 60% that of distilled water. Although the chemical 

composition of each gelling agent was proprietary, Coleman posited that the reduction in 

coolant heat storage capacity was due to the loss of water available for phase change. 

Since the gelling agents do not undergo phase change it follows that the gelling agents 

contribute little with regards to providing actual storage capacity and generally consume 

< 1 cal/g ⁰C.(15)  

 Use of commercial ice vest with and without personal protective ensembles has 

been well evaluated. A recent investigation of the efficacy of one such ice vest 

(Climatech® CM 2000) found that the vest significantly reduced the level of thermal 

strain for subjects wearing insulated protective clothing (nuclear, biological, chemical 

[NBC] suit ) during exercise in a thermal chamber heated to 35⁰C and RH of 65%.(14)  

Wearing the ice vest under the NBC suit lowered HR from minute 60 to 100 of exercise 



www.manaraa.com

8 
 

and attenuated the increase of esophageal temperature (Tes). This slowing of Tes extended 

exercise time by 11.9 min ±.4%.(14) Although the ice vest was able to slow the increase in 

Tes compared to the control, uncompensable heat stress was still apparent in the continual 

rise in temperature during the course of the 120 minute trials.(14) Unfortunately, metabolic 

rate was not one of the metrics; therefore, cooling rate cannot be estimated. 

 Muir, Bishop, and Ray (1999), adapted  Saranex® coated Tyvek® fabric suits to 

hold six frozen gel-packs inserts (78% water) directly against the wearer  via built in 

pouches, they effectively obviated removal of personal protection clothing to replace the 

heat sink.(17) This ice-cooling technique used nylon straps on the outside of the suit to 

ensure two gel-packs placed on the pectoral region, shoulder blades, and lumbar region 

were held against the body. When compared to controls, this six cooling packs 

configuration extended work time among men conducting moderate work at a rate of 450 

W in the two highest of three test conditions of 28⁰C, 23⁰C, and 18⁰C. Mean work time 

increase was 71% and 88% at WBGTs of 23⁰C and 28⁰C, respectively.(17) 

 Gao, Kuklane, and Holmer(20) used a thermal manikin to demonstrate that the 

cooling rate of a PCM depends on the temperature gradient between the skin temperature 

and melting temperature of the PCM. Testing salt mixtures consisting of sodium sulphate 

decahydrate and water at three melting temperatures ( 24, 28 and 32 ⁰C), showed that the 

vest with the lowest melting temperature had the higher cooler rating.(20) Gao et al. also 

demonstrated that PCM mass determines cooling duration while mainly covering area 

dictates cooling rate. 
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 Paraffin wax has also been used as the heat sink in PCM garments. Cooling is 

provided as the paraffin changes from solid to liquid. Parrafin has been shown to absorb 

approximately 200 kJ/kg of heat during the melting process.(21) However, since paraffin is 

flammable it is not ideal for use in industries with an increased risk of exposure to fire. 

Chou, Torchihara, and Kim(22) found that paraffin with a starting temperature of 20⁰C and 

melting temperature of 28⁰C was more effective than frozen water in slowing the rate of 

heat storage in subjects wearing firefighting ensembles. Chou et al. opined paraffin is 

more efficient for use in cooling garments because 1) the higher starting temperature 

obviates a protective barrier between the skin, thus providing a more efficient heat 

exchange and 2) paraffin is more pliable than ice as it melts which increases surface area 

contact with the skin.(22) However, their comparison was confounded by the fact that the 

ice and paraffin had different surface area (1,310 cm2  vs 1,792 cm2) and mass (1,050 g vs 

1,344 g).(22) 

 Review of the literature reveals that PCM cooling garments, when used with 

personal protective ensembles, are capable of slowing heat storage rate but are incapable 

of halting heat storage in hot environments. Due to alteration of heat sink mass, coverage 

area, and heat sink starting temperature, the investigators for passive cooling reported 

cooling rates from 90 to 520 W. Previous studies have shown that the cooling effect of 

frozen water-garments is a linear function of the mass of the ice.(13, 23)  However, with 

more than 500 natural and synthetic know PCMs(24), cooling systems using PCMs have 

the largest potential for future adaptation and study among all the types of cooling 

devices used in the present study. 
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Fluid Cooled Garments 

 Fluid cooled garments include the use of water, air, or aqueous solutions as the 

coolant.(10) The general subclasses of FCGs are liquid cooling systems (LCS) and air 

cooling systems (ACS). FCGs rely on a heat sink attached to the cooling garment with a 

supply hose and a means of providing pressure to circulate the air or liquid through the 

garment. A majority of FCGs rely on ice water and a heat exchange coil to either cool 

liquid in a closed loop water pump system or cool the air as it is supplied from either a 

compressor or air pressure vessel. ACSs have also provided cooling with forced ambient 

air(25), breathing apparatus exhalation air(26), vortex devices, and air conditioner chilled 

air.(7, 27) LCS garments have also used a vapor compression system to supply a liquid 

consisting of water and glycol mixtures.(7, 28) A benefit common to both LCSs and ACSs 

is the ability to adjust the flow rate and temperature of the cooling medium. Compared to 

passive cooling methods, FCGs also provide cooling longer without heat sink 

replenishment.  

 A review of the literature reveals that LCSs and ACSs are not significantly 

different in performance, but LCSs are widely regarded as the most capable personal 

cooling method to use with protective clothing because LCS coverage area can 

effectively be increased to cover the limbs.(29) Notwithstanding, some comparative 

studies found that ACS vest were slightly superior to LCS vest in reducing cardiovascular 

strain and elicited more positive user feedback, with no significant difference between 

overall cooling performance.(8, 28, 30) Vallerand et al. posited that one reason for this 

unexpected difference could be that air is able to cool an area beyond the vest coverage; 

i.e. neck and non-vest covered portion of the torso.(28) Despite physiological performance 
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differentiation between FCGs, some users may favor ACSs because they are generally 

lighter, keep the user drier, and leaks are less problematic.(7) 

 Several authors found no difference in ACS or LCS performance for participants 

wearing nuclear, biological and chemical (NBC) ensembles and exercising intermittently 

at low to moderate paces.(7, 28, 30) Based on these findings, McLellan, Frim and Bell tested 

continuous application of an ACS and LCS with participants wearing NBC and 

exercising at 500 W and 350 W.(31) They found both ACS and LCS changed the 

conditions from uncompensable to compensable during light exercise and produced heat 

strain comparable to the light exercise sans cooling during heavy exercise. The McLellan, 

Frim, and Bell study was congruent with the previous NBC findings that there was no 

“compelling physiological evidence to favor the selection of one cooling method”.(31)   

Liquid Cooling Systems 

 Like PCM cooling garments, LCSs rely on close contact between the coolant and 

the skin to transfer heat. In the case of LCSs, conduction is the primary mode of heat 

transfer as liquid is circulated near the skin through a system of plastic tubing (typically 

polyvinyl chloride) and then back to the heat sink via an electric motor driven pump. The 

coolant remains at a constant inlet temperature as long as the heat sink maintains cooling 

capacity. A LCS’s thermal capacity may be altered by changing the flow rate and specific 

heat of the coolant.(32) In addition, heat transfer rate can be increased by increasing tubing 

coverage area, unlike ACSs which are more restricted to body coverage.(18, 27, 32) 

 The heat exchange across a LCS is shown to be proportional to the inlet 

temperature of the cooling liquid.(32) Inlet temperature can be altered by environmental 

temperature, length of the heat exchange tubing, and insulation value of the clothing over 
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the LCS.(32) Several studies have shown that LCS contact with the skin is an important 

factor and garment fit may significantly affect system efficiency because a loose fit 

reduced skin-to-tubing contact area.(29)        

 The most commonly used heat sink is ice water but compression cooling offers a 

lower inlet temperature (below 0 ⁰C) when a mixture of water and propylene or ethylene 

glycol is used. A 2002 study by Caderette et al. compared the performance of ice-based 

and vapor compression (18⁰C) based liquid cooling systems for use with impermeable 

protective clothing and found they were equally effective during heat exposure.(27) The 

same study also reinforced the idea that cooling rate was significantly increased by 

enlarging cooling garment coverage area.(27)  

Air Cooling Systems 

 ACSs remedy the lack of heat dissipation through convection cooling and 

fostering the body’s natural evaporative cooling mechanism. This is accomplished 

through use of powered air which is either cooled prior to input into the garment or the 

use of ambient air. The most typical method of heat exchange is air coil immersion in an 

ice water reservoir. Another common method uses a vortex tube, which decreases the 

inlet air temperature by separating the warm air from the higher density cool air.   

 Several authors have posited that ACSs may be superior to LCSs because air 

cooling fosters evaporation, which is the body’s primary natural means of heat 

dissipation.(7, 30) Indeed, evaporation has a high capacity for heat dissipation; each liter of 

sweat transfers approximately 2,400 kJ of heat energy.(29) However, efforts to quantify 

the extent of evaporative cooling contribution to cooling system performance have been 

unsuccessful.(30, 31) 
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 The inconvenience of using tethered sources has spurred the development and 

study of several non-tethered ACSs which provide continuous cooling. The most widely 

studied is use of ambient air supplied via a belt or pack mounted air intake (without 

vortex tube). Chen, Constable and Bomalaski found that use of ambient air during work 

periods was effective when used in conjunction with conditioned air delivered during rest 

periods during.(25) One study circulated exhalation air from a full face respirator into the 

user’s fully enclosed protective ensemble but found the humidity of the exhaled air and 

lack of temperature gradient did not provide cooling.(33)   

Shapiro et al. found that using ambient air to supplied air vest (ventilation) in a 

hot-dry environment (49⁰C, 205%RH, 68⁰C Tg) could damage the skin, and in the hot-

wet environment (35⁰C, 75%RH) had low effectiveness.(30) In the same study there was 

no significant difference between an air cooled vest and water cooled vest with regards to 

heat storage or physiological metrics, except that the air cooled vest produced 

significantly lower cardiovascular strain. 

 Zhang, Bishop and Green found that a portable cooling vest designed to vent 

gaseous CO2 over the skin, facilitated a higher sweat evaporation rate, and created 

positive subjective response, however; the cooling device was found to have no 

significant cooling impact during work of less than 50 minutes.(34) The liquid CO2 

cooling system (Porticool Personal Cooling System, Porticool, Inc.) consisted of a 

regulator and CO2 bottle (worn with nozzle facing down to release liquid CO2 into the 

regulator), connected via flexible tubing to a vest designed to vent the vapor over the 

subjects skin.(34) During trials with participants dressed in jeans and tee shirts, an 

environment of 30⁰C WBGT (75% RH), with workloads of 465 W; the liquid CO2 vest 
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increased work time (97 ± 36 min) compared to no cooling (74 ± 26 min) and decreased 

heat storage (54 ± 41 W) compared to no cooling (72 ± 40 W).(34) Use of the liquid CO2 

vest fostered sweat evaporation from the skin (60 ± 10% vs. 51 ± 10%) but had no impact 

on sweat production rate.(34) As stated by Zhang et al.(34) the evaporative cooling benefit  

from this device may be diminished or completely negated by protective clothing.(34) 

Evaporative Cooling Garments 

 Evaporative cooling garments (ECGs), a type of passive cooling device, freely 

evaporate water or other coolant from their fabric to the surrounding environment when 

wetted. A study by Heled, Epstein, and Moran, showed that evaporative cooling garments 

can successfully be placed over protective suits made out of polyvinyl chloride and 

polyethylene to reduce heat storage rate.(35) Because gas extraction ensembles consist of 

multilayered cloth, use of evaporative cooling garment is not an option for gas utility 

workers. 

 Recently, researchers designed and tested a vacuum desiccant cooling (VDC) 

prototype which successfully exploited the cooling power of evaporation within specially 

designed cooling packs. Human trials revealed a cooling capacity of 373W/m2.(10) This 

cooling method integrates vacuum cooling, desiccant cooling, and membrane technology 

to yield a device that employs the latent heat of water evaporation which is approximately 

seven times of the latent heat of ice melting.(10) Each pad consisted of a cooling core 

(water bag), a spacer, an absorption core (LiCl powder), and an outer bag. A vacuum is 

applied to activate the pouches prior to use, but after initial activation cooling was 

provided for 60 minutes. Total weight of the system was 3.4 kg. 
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Table I. Reports of cooling system performance, factors that were reported as affecting 
performance and the reported or estimated cooling rate. 

 
  a Increase in body surface area coverage increases performance 
  b Increase in flow rate increases performance 
  c Decrease in inlet temperature increases performance 
  d  Increase in heat capacity of the heat sink increase performance 
  e Increase in metabolic rate decreases performance 
  f Increase in clothing insulation and/or decreases in air temperature increases performance. 
   * Estimated Cooling Rate 
 
  

Study (Authors) Type Style Areaa Flow 
ratec

Inlet 
Tempd

Heat 
capacitye

Work 
ratef

Clothing 
and Tdbg

Cooling 
Rate [W]

Zhang, Y. et al. ACS Vest (CO2) ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ 411*
‾‾ ‾‾ ‾‾ ‾‾ ‾‾ Yes 428*
‾‾ ‾‾ ‾‾ ‾‾ ‾‾ Yes 412*
‾‾ ‾‾ ‾‾ ‾‾ ‾‾ Yes 373*

Kamon, E. et al. PCS Jacket Yes ‾‾ Yes ‾‾ ‾‾ 80 to 150
LCS Vest ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ Yes 79 to 121
ACS

 
(Ambient) ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ Yes 32

Bennett et al. PCS Ice Vest Yes ‾‾ ‾‾ Yes ‾‾ ‾‾ 150

LCS Shirt w/hood Yes
‾‾ ‾‾ ‾‾ ‾‾ ‾‾ 281

LCS Body suit Yes ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ 362
Nag et al. LCS Jacket ‾‾ Yes ‾‾ ‾‾ ‾‾ Yes 165

ACS Vest ‾‾ ‾‾ Yes ‾‾ ‾‾ ‾‾ 185*
ACS Vest ‾‾ ‾‾ Yes ‾‾ ‾‾ ‾‾ 160*
LCS Suit-60 m Yes ‾‾ Yes ‾‾ ‾‾ Yes 290
LCS Suit-120 m Yes ‾‾ Yes ‾‾ ‾‾ Yes 460

Konz, S. et al. 
PCS Vest (Dry 

ice)
Yes ‾‾ ‾‾ Yes ‾‾ Yes 90

LCS Suit ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ 210
PCS Vest-Freon ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ 210

Tayyari, F. et al. PCS Vest-Ice ‾‾ ‾‾ ‾‾ ‾‾ Yes ‾‾ 260 to 335*
Coleman, S. PCS Vest ‾‾ ‾‾ ‾‾ Yes ‾‾ ‾‾ ‾‾

LCS Various Yes Yes Yes ‾‾ Yes Yes 150 to 400
PCS Vest Yes ‾‾ ‾‾ Yes ‾‾ Yes 190 to 400
ACS Vest ‾‾ Yes Yes ‾‾ Yes Yes 50 to 700

Yang et al. 
PCS

Vest 
(Vacuum 
dessicant)

‾‾
‾‾ ‾‾ ‾‾ ‾‾ ‾‾ 150

Kenny, G.P et al. PCS Vest ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ 250*
ACS Vest ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ 181
LCS Vest ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ 164
ACS Vest ‾‾ ‾‾ ‾‾ ‾‾ Yes ‾‾ 280 to 435*
LCS Shirt ‾‾ ‾‾ ‾‾ ‾‾ Yes ‾‾ 280 to 435*

 Muir, I., Bishop, P., &  
Ray, P. PCS Ice pack 

coveralls

McLellan, T., Frim, J., 
& Bell, D. 

Shipiro et al.

Cadarette et al. 

Bomalaski, S., Chen, Y., 
& Constable, S. 

Harrison & Belyavin 

White et al. 

Speckman, K. 

Vallerand, A. et al.
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CHAPTER 3: METHODS 

 

Overview 

 A variation of the US Army Research Institute for Environmental Medicine’s 

(USARIEM)  recommended approach of evaluating the physiological effects of 

protective clothing by fixed environmental condition(s) and at a fixed metabolic rate was 

used to test the cooling systems. At the University of South Florida, this method of 

evaluation is the Short-term Protocol. The aim of the Short-term Protocol is to create 

condition(s) conducive to body heat storage by manipulating environment, work 

demands, and clothing.(36) The present study held clothing and metabolic rate constant, 

and the cooling systems were treatments in the experimental design. The primary metric 

was the average heat storage rate.  

Equipment 

 The experiments were conducted in a climatic chamber. The internal dimensions 

of the chamber are 2.7 m wide, 3.0-m deep and 2.2 m high. Heat rate was monitored with 

a wireless chest strap heart rate (HR) monitoring system. Core temperature (Tre) was 

continuously monitored by means of a flexible thermistor inserted 10-cm beyond the anal 

sphincter muscle. The thermistor was calibrated prior to each trial in a stirred water bath. 

Skin temperature was continuously monitored using surface thermistors taped to the right 

triceps, pectoralis major, quadriceps femoris, and gastrocnemius. In addition, ingestible 
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body core thermometer pills were used. The pill was swallowed either the night before or 

upon reporting to the lab for a trial.  

 Metabolic rate was assessed from oxygen consumption using an open circuit 

method. During the measurement, the subject breathed through a mouthpiece while 

wearing a nose clip. The expired air was collected for three minutes into a collection bag 

fitted with a quick turn valve and the volume of air expired was measured using a dry gas 

meter. Prior to volume measurement, a small sample was drawn into an oxygen analyzer 

to determine exhaled air’s oxygen content. Oxygen consumption was computed 

following standard methods.(37) This process was carried out 30 minutes, 60 minutes, and 

90 minutes into the study and was done without stoppage of treadmill walking. 

Participants 

 Five male participants completed the trials; their age, weight, height, and the 

mean metabolic rate across all trials are described in Table 1. The study protocol was 

approved by the University of South Florida Institutional Review Board. Participants 

provided written informed consent following university policy and underwent a physical 

examination by a licensed physician. Qualifying for participation entailed physical 

examination for evidence of disorders of the vestibular system, pulmonary system, 

cardiovascular system, gastrointestinal system, genitourinary system, musculoskeletal 

system, and neurological system. Participants also underwent a resting 12-lead 

electrocardiogram. All of the participants were healthy with no chronic disease required 

medication.  

 Participant pre-session weights were tracked to assure no progressive loss of 

water and the pre- and post-session weight loss was used to guide subject rehydration for 
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the remainder of the day. A day-to-day or pre-to-post net loss of 1.5% of body weight 

was used as a trigger point to advise more aggressive fluid replacement. Participants were 

asked not to consume caffeine or participate in vigorous exercise prior to their trial. The 

participants were not acclimatized as part of the protocol. There were at least 40 hours 

between trials to reduce the effects of acclimation. 

 

Table II. Physical Characteristics of Five Male Participants 
 

Code Age 
[yr] 

Weight 
[kg] 

Height 
[cm] 

Mean Metabolic Rate 
[W] 

S1 22 74 179 263 
S2 22 81 201 293 
S3 25 80 183 252 
S4 30 83 178 295 
S5 23 88 185 337 

Average 24 81 185 288 
Std. Dev. 3.0 4 8 30 

 
Protocol 

 There were two environmental conditions; a standard desert condition of Tdb= 

40⁰C (104⁰F) and 30% RH, and a standard subtropical environment of Tdb=35⁰C (95⁰F) 

and 50% RH. Air motion for both environments was 0.5 m/sec , there was no radiant heat 

load, and temperatures were held constant within ± 0.5 ⁰C. Five participants completed 

trials for four cooling vests plus no-cooling while wearing the gas extraction coveralls in 

both environments for a total of 10 trials per participant. The order of the cooling system 

was randomized and partially balanced among participants within an environmental 

condition. Environmental conditions (Tbd and Tpwb) were recorded 5 minutes every 

intervals. 
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 The standard protective clothing was a gas extraction coverall (Gas Extraction 

Suit ® GES8, Oberon Co., New Bedford, MA) and related flame resistance balaclava 

sock hood and multilayer heat protective gloves (Figure 1). Nomex® coveralls, gym 

shorts, and tee shirt were worn under the protective ensemble. Footwear consisted of 

athletic socks and running shoes. All cooling vests were worn under the Nomex® 

coveralls and over a tee shirt.  

 Participants prepared for the trial by inserting the rectal thermistor, and dressing 

in gym shorts and shoes. After recording the semi-nude weight (sans tee-shirt and shoes), 

surface thermistors were taped to the skin and a heart rate monitor was strapped around 

the chest. If applicable, a cooling vest was donned over the tee shirt before donning the 

protective ensemble. Prior to entering the climatic chamber, fully clothed weight was 

recorded. During the trial, participants were provided water and/or a commercially 

available fluid replacement beverage as requested. Total fluid consumed was recorded. 

After termination of the trial, fully clothed and semi-nude weight was again recorded. 

 Participants walked on a motorized treadmill set to elicit a moderate metabolic 

rate of 300 W for 120 minutes or until volitional fatigue, heart rate reached 95% of age-

predicted maximal heart rate, or internal body temperature of >39⁰C. Walking pace with 

no incline was selected independent of participant aerobic capacity to elicit about 300 W. 

Data (Tre, HR, Tsk, Tpwb, Tdb) were monitored continuously throughout the trial and 

recorded every five minutes. 
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Figure 1. Protocol clothing consisted of gym shorts, shoes, and a tee-shirt worn under 
Nomex® coveralls and the flame resistant Gas Extraction Suit ® (with gloves and 
balaclava). 
  

Personal Cooling Systems 

 Four personal cooling systems plus a control (no cooling) were tested. All cooling 

systems covered the torso, providing cooling to the front and back. Figure 2 shows the 

frozen polymer vest, and Figure 3 shows the heat sink and tether of the FCGs. A 

description of each system follows. 

Frozen Polymer Vest 

 The frozen polymer vest, marketed under the name Stacool Industrial Vest, is 

manufactured by StaCool Industries Inc. (Brooksville, FL). Cooling is accomplished by 

three frozen polymer panels inserted into the front and back of the vest (Figure 2). The 

frozen panels consist of 12 individual cells that contain a non-flammable and non-toxic 
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polymer material. Stacool utilizes 3M Thinsulate ™ to insulate the frozen panels from the 

wearers body and nylon on the exterior. The vest is designed with two Velcro® straps 

around the waist and one over each shoulder to ensure the polymer panels maintain 

contact with the skin. 

 

 

Figure 2. The front side of the StaCool Industrial Vest ® with three of the six 12-cell 
frozen polymer panels exposed.  
 
 The polymer panels were prepared per manufacture instructions by soaking them 

in warm water to allow the polymer to hydrate and then placing them in the freezer. Upon 

hydration, the cells took on a gel consistency, and did not require rehydration after use. 

The polymer panels were kept in a freezer with a temperature of -11 ⁰C (12 F) and 

weighted 2.4 kg (5.29 lbs). The polymer panels were not replaced during the trial. 

Liquid Cooling Vest 

 The liquid cooling vest, produced by Shafer Enterprises (Stockbridge, GA) under 

the trade name CoolShirt ® Aqua Vest, was used with a 24 quart (22.7 L) cooling 
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reservoir produced by the same company. The cooling water is supplied through a 20 ft 

(6 m) long supply hose, runs through about 50 feet (15.2 m) of capillary tubing inside the 

vest, and returns to the reservoir under power of a 110 V submersible electric pump 

(1360 L/hr). The rubber supply and return hose were covered with neoprene insulation 

and encased within a layer of foam insulation. The cooling reservoir was filled with 4.5 

kg (10 lbs) of ice and 4.5 L of water. The ice was not replenished throughout the trial, but 

ice was present in the cooler at trial end. Per the manufacturer’s instructions, the vest was 

soaked with water prior to each use. The vest weighted about 1.8 kg (4 lbs). 

Air Cooling Vest  

 The air cooling system was a flame retardant cooling vest (Part No. 8450) 

manufactured by Allegro Industries (Piedmont, SC). Compressed air was provided with 

air tanks (breathing quality) and cooled with a Cool-Box® (Model No. BACB-196) 

produced by Air Systems International (Chesapeake, VA). The Cool-Box® (Figure 3) was 

filled with 20 lbs of ice and 21 liters of water and has a capacity of 37.8 L. Ice was not 

replenished throughout the trial, but ice was present in the cooler at each trial end. For all 

trials the compressed air was regulated to maintain at supply pressure of 90 psi. To 

measure total flow rate, a dry gas meter was used to measure the volume discharge from 

the vest into a sample bag during a 30 s interval where the supply pressure to the cooler 

was 90 psi; the mean of four measurements was .24 m3 per minute. Each 8.5 m3 air tank 

lasted about 35 minutes. The air vest weighted 0.68 kg (1.5 lb). 

Liquid Carbon Dioxide Vest 

 The liquid CO2 (LCO2) vest, known as the Porticool II® is marketed by 

CoolShirt, Inc. (Stockbridge, GA). This system consists of a 20 oz CO2 bottle threaded 
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into a regulator which supplies liquid CO2 to a supply hose attached to a network of 

ventilation hose sewn into the vest. As the liquid CO2 exits the regulator it vaporizes and 

the flow of gaseous CO2 travels from the regulator through the connection hose and vest 

tubing, and finally vents over the body. To supply liquid CO2, the bottle must be carried 

upside down. Because our protocol entailed walking, a paintball CO2 canister belt (NXe® 

Paintball SP Series 2+1 harness) was used to secure the CO2 bottle and regulator around 

the waist. The system arrived with a belt attachment clip but it could not support the 

weight of the system, which was 1.3 kg (2.9 lbs). The CO2 canister was changed every 25 

minutes and the flow valve was always set to fully open.  

 

 

Figure 3. Pictured from left to right: 1) CoolShirt® Aqua Vest system, 2) Allegro® air vest 
with Cool-Box air cooling system (Air Systems Inc.), and 3) Porticool II ® cooling 
system secured to the participant with a paintball bottle belt (NXe®). Each cooling vest 
was worn under the Gas Extraction Suit® and Nomex® coverall and over a T-shirt.  
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Determination of Dependent Data 

 The baselines for the computations of the rates were the values of rectal 

temperature (Tre), average skin temperature (Tsk) and heart rate (HR) at 5 minutes into the 

trial. The changes in the first 5 minutes represent an adjustment to work rather than any 

effects due to heat stress. The final values of these measures and the elapsed time (e.g., 

115 min = 1.92 hr) were used to compute the rate of change. 

Heat storage rate (S) was calculated as: 

 

S[W] = (ΔTre/Δt)[⁰C/hr] x Body weight [kg] x 0.971 [W · hr / kg ·⁰C]                           (1) 

 

Where ∆t was the trial time in hours, and 0.971 W·hr·kg-1 ·⁰C-1 is the body specific heat. 

Change in core temperature (ΔTre), heart rate (ΔHR), and skin temperature (ΔTsk) were 

calculated as: 

 ΔTre = Tre final – Tre 5 min (2) 

 

 ΔHR = HRfinal – HR5 min (3) 

 

 ΔTsk = Tskfinal – Tsk 5 min (4) 

   

Where average skin temperature was calculated as:  

 

 Tsk= 0.3 (TChest + TArm) + 0.2 (TThigh+ TCalf) (5) 
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While heat storage rate is indicative of the increase in body core temperature, cooling rate 

(CR) is used to quantify the heat diminishing capacity of cooling devices. Where CR is 

the metabolic rate (M) minus the heat storage rate (S). That is, CR= M-S. 

Data Analysis 

 The primary dependent variable was heat storage rate (S). Other dependent 

variables were change of body core temperature (∆Tre), heart rate (∆HR) and average 

skin temperature (∆Tsk). Data were analyzed using JMP ® (version 9) statistical software 

(SAS, Cary, North Carolina). To analyze the relationships among cooling systems and 

environment, a three-way mixed effects ANOVA (analysis of variance) was performed in 

which cooling system and environment (plus cooling system x environment) were fixed 

effects and the participants were treated as a random effect. A Tukey’s Honestly 

Significant Differences (HSD) multiple comparison test was used to identify where 

significant differences occurred between cooling system performance (p < 0.05).  
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CHAPTER 4: RESULTS 

 

 All trials lasted 120 minutes with one exception where a frozen polymer (FP) trial 

in desert condition was terminated at 100 minutes due to reaching the body core 

temperature threshold. Two LCO2 trials were not completed due to technical problems, 

resulting in four LCO2 trials in each environment. One NC trial in the desert condition 

was repeated for one participant. Table III provides the number of trials and the mean 

values for M and heat S. Table III also lists the mean change in Tre, HR, and Tsk.   

Table III. Summary of experimental results. 

Environment Cooling  N M 
[W] S [W] 

ΔTre  ΔHR  ΔTsk  Cooling 
Rate [W] [°C] [bpm] [°C] 

Desert NC 6 296 35 0.9 33 1.34 261 
40 °C  LCO2 4 283 25 0.6 32 1.25 258 
30% RH FP 5 291 19 0.48 15 1.54 272 
  Air 5 294 15 0.38 5 0.52 279 
  Water 5 304 5 0.14 3 0.17 299 
Subtropical NC 5 284 21 0.53 33 1.52 263 
35 °C  LCO2 4 288 25 0.63 26 2.46 263 
50% RH FP 5 284 10 0.25 9 1.53 274 
  Air 5 253 11 0.27 5 -0.58 243 
  Water 5 295 14 0.36 6 0.38 281 
Combined NC 11 290 29 0.73 33 1.42 261 
  LCO2 8 286 25 0.62 29 1.86 261 
  FP 10 288 15 0.37 12 1.53 273 
  Air 10 273 13 0.33 5 -0.03 260 
  Water 10 299 10 0.25 5 0.27 289 

Note: Change (Δ) in physiological metrics was calculated as the difference between the values at 5-minutes 
and end of trial. Cooling Rate = M – S. M is metabolic rate and S is storage rate. 
  

 There were no significant differences due to environment, and no interaction. 

Therefore, the reported data that follow are the combined results of both environments. In 
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all cases, there were significant differences among the cooling conditions. Metabolic rate 

was consistently achieved with an (average of 287 W) with no significant difference 

among cooling or environmental conditions. 

Heat Storage Rates 

 Figure 4 illustrates the combined mean storage rate of trials with each cooling 

system. Mean storage rate ranged from approximately 10 W to 29 W, and there was no 

statistically significant difference between NC (28.2 ± 3.8 W) and LCO2 (24.6 ± 4.3 W) 

for storage rate (α < 0.05). The same was true for the LCO2, FP (14.7 ± 3.9 W), and air 

(12.6 ± 3.9 W). FP, air and water (9.9 ± 3.9 W) systems were not significantly different 

but were all significantly lower than NC and LCO2. 

 

 

Figure 4. Mean heat storage rates [W] and standard deviation whiskers for each cooling 
system. Horizontal lines indicate that there is no statistically significant difference. 
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Body Core Temperature 

 Figure 5 illustrates the mean difference between core temperature (Tre) at end of 

trial and Tre at minute 5, which ranged from 0.25 to 0.72 ⁰C. There was no statistically 

significant difference between change in Tre during the NC (.72 ± .09 ⁰C) and LCO2 (.61 ± 

0.10 ⁰C) cooling conditions. The same is true for LCO2, FP (.37 ± 0.09 ⁰C), and air (.33 ± 

0.09 ⁰C). FP, air, and water (.25 ± 0.09 ⁰C) were significantly lower than NC and CO2 but 

were also not significantly different. Figures 6 shows the combined mean changes in Tre 

across time for the desert condition and sub-tropical condition. 

 

 

Figure 5. Mean change in core temperature and standard deviation whiskers for each 
cooling system. Horizontal lines indicate that there is no statistically significant 
difference. 
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Figure 6. Mean core temperature across time. 
 
Skin Temperature 

 Figure 7 illustrates the mean difference between skin temperature (Tsk) at end of 

trial and Tsk at minute 5. Change in Tsk ranged from -.03 to 1.8 ⁰C. Figure 8 is the mean 

change in Tsk across time starting at 5 minutes until the end of each trial for both 

environmental conditions combined. There was no statistically significant difference in 

change of Tsk between LCO2 (1.8 ± .32 ⁰C), FP (1.5 ± .31⁰C), or NC (1.5 ± .29 ⁰C). FP, 

NC and water were not differentiated but were lower than the LCO2 condition. Water and 

air (-.03 ± .31⁰C) were not differentiated; however air was the lowest of all conditions. 

The rise of skin temperature associated with air and water (.27 ± .31⁰C) were not 

significantly different but were significantly lower the other conditions. 
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Figure 7. Mean change in skin temperature and standard deviation whiskers for each 
cooling system. Horizontal lines indicate that there is no statistically significant 
difference. 
 

 
 
Figure 8. Mean skin temperature across time. 
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Cardiovascular Strain 

 Figure 9 illustrates the mean change in heart rate (ΔHR) from minute 5 of each 

trial to end of trial. ΔHR ranged from 5 to 33 beats per minute (bpm). No statistically 

significant difference in ΔHR exists between the NC (33.3 ± 2.8 bpm) and LCO2 (27 ± 

3.1 bpm). FP (12 ± 2.8 bpm), air (5 ± 2.8 bpm) and water (4.6 ± 2.8 bpm) were not 

differentiated but had a significantly lower ΔHR compared to NC and CO2. Figure 10 

shows the mean change in heart rate across time. 

 

 

Figure 9. Mean change in heart rate and standard deviation whiskers for each cooling 
system. Horizontal lines indicate that there is no statistically significant difference. 
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Figure 10. Mean heart rate across time. 
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CHAPTER 5: DISCUSSION 

 

 The purpose of the present study was to compare the performance of a frozen 

polymer vest, air vest, water vest, and LCO2 vest during continuous exercise to discern if 

one cooling system was more effective than another in aiding heat transfer from the body 

while wearing a gas extraction coverall. The physiological data collected over the 120 

minute work session provided cooling vest differentiation by way of heat storage rate and 

heat strain. If storage rate is near zero, then the person is in equilibrium and can safely 

work for an extended period of time. As the storage rate increases the work time 

decreases.  

 There were no statistically significant differences in measured metabolic rate 

among cooling systems or environmental conditions (Table I). Consistent metabolic rates 

confirm that similar work demands were established across all trials, which means 

comparison among devices and environments are meaningful. Differences among 

participant responses to heat stress were acceptable because the data analysis methods 

controlled for those differences. There were no differences between the two 

environments. In practice, the protective clothing probably isolated the user from the 

external thermal environment between 30 and 45 °C (86 and 113 °F), and the work 

demand (i.e., metabolic rate) was the major contributor to heat storage rate. Montain et al. 

also found that participants had similar physiological tolerance when wearing protective 

clothing in desert and tropical climates.(2) 
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 As seen in Figures 6 and 7, the Tre over time alone may not necessarily provide a 

clear depiction of the cooling power among cooling devices. However, ΔTre is indicative 

of the body’s ability to maintain a homeostasis. In this regard, heat storage rate does 

provide the most apparent indication of cooling device performance (Figure 5) and 

indicates that FP, air, and water were all significantly lower than NC.  

 The air and water vest performed well with heat storage rates of about 43%, and 

34% of the control. That air and water cooling were not significantly differentiated is 

congruent with previous comparisons of ACS and LCS for use with personal protective 

ensembles.(7, 28, 30, 31) McLellan, Frim, and Bell found that an air vest and water vest 

provided a cooling rate of about 280 W and 279 W for participants with a work rate of 

300 W in a standard desert (40⁰C and 30% RH) condition.(31)  The present study showed 

a mean cooling rate of 279 W for air vest and 299 W for water vest in the desert 

condition (Table III).  

 The FP Vest exhibited good performance with a heat storage rate of about 51% of 

the control. The mean cooling rate was 273W (Table III). In comparison, a study by 

Tayarri, Burford, and Ramsey found a cooling rate of 260 W for participants exercising at 

a rate of 300 W (no protective garments) in an environment of 40 ⁰C and 75% RH.(16)  

Similar results were also reported by Kenny et al., who reported a cooling rate of about 

250 W for workers wearing NBC and exercising at a pace of about 300 W in a hot 

environment (35⁰C, 65% RH).(14)  

 Performance of the LCO2 system was not differentiated from the control. This 

was the first study to test the use of the LCO2 with a protective ensemble. A previous 

study of the LCO2 system by Zhang et al., found it was effective in increasing work time 
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and attenuating heat stress in an environment of 33 ⁰C Tdb/75% RH with a time-weighted 

workload of 465 W, for study participants wearing jeans and tee-shirts.(34)  Both Zhang et 

al.(34) and the present study applied the LCO2 vest over a tee shirt, changed the bottles out 

at about 25 minutes, and used a continuous exercise protocol. Conversely, in the present 

study the flow rate was set to maximum, while Zhang et al.(34) set the flow at a moderate 

rate. Our results suggest that the cooling rate was not adequate to compensate for a 

moderate rate of work while wearing the gas extraction suit.  

 It should also be noted that the manufacturer supplied clip-on style bottle harness 

did not sufficient secure the CO2 bottle and regulator, therefore; a paint ball CO2 bottle 

harness (NXe Paintball SP Series 2+1 harness) was purchased to provide adequate 

holding capacity. Changing the 20 oz CO2 bottles was relatively easy, taking about 3 

minutes on average. However, the manufacturer instructions must be followed carefully 

to avoid malfunction of the regulator. For instance, over treading or under treading the 

bottle into the regulator assembly could result in lack of liquid CO2 flow.  

 The polymer was melted at the end of the trials, which means that the heat sink 

was exhausted and that the service life was just under two hours. Unlike some other 

phase change materials, such as paraffin, the heat sinks used in this garment cannot be 

recharged in a cooler with water ice. The effects of the storing the FP heat sinks in a 

cooler prior to use were not examined in this study (they were inserted directly from the 

freezer). However, the polymer vest may be favorable over other PCMS because the 

material is non-toxic (in case of leaks) and is not flammable. 
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 Practical considerations of the tethered systems include power supply for the 

water vest and a source of compressed air for the air vest. In addition the weight of the 

heat sink may be of concern. The Air Vest heat exchange cooler weighed about 41 kg (90 

lb) once loaded with 21 liters of water and 9.1 kg (20 lb) of ice. The heat exchange cooler 

had wheels but the design of the cooler is of standard domestic food cooler variety, 

therefore may have less mobile on rugged terrain. In contrast, the water vest cooling 

water reservoir weighed about 12 kg (26 lb) when loaded with 4.5 kg of ice and 4.5 L of 

water. 

 Regarding ease of wear, the water vest’s insulated supply and return hose was 

awkward to don because the tether attachment is located on the side of the water vest. 

This arrangement required that the hose be fed through the back of the flash gear and then 

around the wearer to the connection near the left hip; however no participants complained 

of discomfort during the trials. This connection arrangement was similar to the air vest, 

only the air hose was of much smaller circumference.  

Limitations 

 Modification of the study protocol would allow further differentiation of the 

cooling systems by way of exposure time. This can be achieved by adjusting workload 

with input from biomedical modeling.(4, 36)   

 Another weakness of this study is the small number of participants. Although 

similar trials have used small sample sizes, using more subjects would further 

differentiate the heat storage results. 
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Conclusion 

 The mechanisms of heat retention caused by the Gas Extraction Suit® occur as a 

result of increased insulation and decreased permeability. It can be concluded that water, 

air, and FP cooling vest can be beneficial in that they have the capability of decreasing 

the physiological strain of working in hot environments and the ability to ease the 

employee discomfort during continuous work. Where being free of tether is important, 

use of FP is an effective alternative to powered cooling vest, but the heat sink was 

depleted after the two hour trials and requires removal of the coverall to replenish the 

heat sink. Because FP packs must be frozen to be effective, FP may have limited 

application for faraway or protracted jobs because chilling the polymer packs in an iced 

cooler will reduce effectiveness (according to manufacturer). Conversely, as evidenced 

by the ice remaining in the air and water vest heat sinks, air and water are capable of 

continuous cooling beyond two hours and can be replenished with ice as needed. 
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Appendix A: Tukey’s HSD results.  

Table AI: Means differences Tukey’s Honestly Significant Difference multiple 
comparison test results. 

Storage Rate (minute 5 to 120)   
Device Level Least Square Mean (W) Standard Error 
NC A 

  
28.24 3.80 

CO2 A B 
 

24.64 4.29 
Frozen 

 
B C 14.76 3.90 

Air 
 

B C 12.58 3.90 
Water 

  
C 9.89 3.90 

Change in Core Temperature (minute 5 to 120) 
Device Level Least Square Mean (⁰C) Standard Error 
NC A 

  
0.715 0.092 

CO2 A B 
 

0.615 0.105 
FP 

 
B C 0.366 0.096 

Air 
 

B C 0.325 0.096 
Water 

  
C 0.251 0.096 

Change in Heart Rate (minute 5 to 120) 
Device Level Least Square Mean (bpm) Standard Error 
NC A 

  
33 2.49 

CO2 A 
  

26.4 2.61 
FP 

 
B 

 
12.1 2.61 

Air 
 

B 
 

5 2.61 
Water 

 
B 

 
4.6 2.61 

Change in Skin Temperature (minute 5 to 120) 
Device Level Least Square Mean (⁰C) Standard Error 
CO2 A 

  
1.78 0.324 

FP A B 
 

1.53 0.311 
NC A B 

 
1.46 0.291 

Water 
 

B C 0.27 0.311 
Air     C -0.031 0.311 
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